AFFIDAVIT OF ANNUAL LABOR STATE OF NEVADA COUNTY OF ELKO SS: ## PROOF OF LABOR ON | | 200 | the state of s | | and the same of th | | |------|-------|--|-----|--|----| | Sevy | No. 4 | Sevy No. | 21 | Sevy No. | 35 | | Sevy | No. 5 | Sevy No. | | Sevy No. | 36 | | | No. 6 | Sevy No. | | Sevy No. | 37 | | Sevy | No. 7 | Sevy No. | | Sevy No. | 38 | | Sevy | No.15 | Sevy No. | 29 | Sevy No. | 47 | | Sevy | No.16 | Sevy No. | 30 | Sevy No. | 48 | | Sevy | No.17 | Sevy No. | 31 | Sevy No. | 49 | | Sevy | No.18 | Sevy No. | -32 | Sevy No. | 50 | | Sevy | No.19 | Sevy No. | 33 | Sevy No. | 51 | | Sevy | No.20 | Sevy No. | 34 | Sevy No. | 52 | Lode Niming Claims; all contiguous. KNOW ALL MEN BY THESE PRESENTS that B. S. Hardie, being first duly sworn, deposes and says: That at the instance of the affiant, NEWMONT EXPLORATION LIMITED, that it expended more than \$100.00 per claim for labor or improvements, as the annual assessment work for year ending September 1, 1971, on or for the benefit of all the aforesaid claims, in the Secret Canyon Mining District, Eureka County, Nevada, owned by NEWMONT EXPLORATION LIMITED, for the purpose of holding all of the aforesaid claims. Said labor was performed by employees and a contractor, Worthing Construction Company and its employees between the fourteenth (14th) day of September 1970 and the sixteenth (16th) day of August 1971 and that more than 16 days of labor were performed. Such work or Improvements, and character, consisted of constructing or building approximately 11,600 feet of drill road, and taking 211 soil samples for geochemical analyses by Rocky Mountain Geochemical Corp., Salt Lake City, Utah, plotting assays and studying the results, on the Sevy Claim Nos. 2, 3, 6, 7, 8, 9, 10, 20, 21, 25, 26, 57, 58, 59, 60, 61, 62, 64, and 65. ## REPORT OF GEOCHEMICAL SURVEY The report of the Geochecmical Survey which qualifies as assessment work under 72 Stat. 1701 (30 USCA, sections 28-1 and 28-2), consists of the following: - (a) The location of the work performed in relation to the points of discovery and boundaries of the claims is shown on the accompanying map, annexed here to and made a part hereof, containing the names and numbers of the claims, their boundaries with relation to each other and to the points of discovery, and the location of each sample, the intervals of which are shown on the accompanying report and tabulation. - (b) The basic findings from said survey is shown on the tabulation, in the "REPORT OF GEOCHEMICAL SURVEY", annexed hereto and made a part hereof. - (c) Affiant supervised the Geochemical sampling and studied the results. His name and address are: Byron S. Hardie, 134 West Maple Street, Elko, Nevada, 89801. His professional background is as follows: -2- He is a qualified Mining-Geological Engineer, and is registered professionally with the Nevada State Board of Registered Professional Engineers, No. 1823, to legally practice his profession in the State of Nevada. He has practiced his profession for 31 years. He has a B. S. degree, majoring in mining geology. Dated this ____ day of October, 1971 BYRON S. HARDIE, Affiants Representative Subscribed and sworn to before me the and day of October 1971. - Bearing Dean det Notary Public in and for the County of Elko, State of Nevada Hotary Public State of Nevada E.KO COUNTY, NEVADA Commission Expires May 2 1974 40 457 NEWMONT EXPLORATION LIMITED SEVY CLAIMS - ROCKY CANYON SECRET CANYON MINING DISTRICT EUREKA COUNTY, NEVADA Location of samples taken for geochemical analyses between Sept. 21, 1970 and April 16, 1971 inclusive. Location Monument Sept. 1971 M.H.W. 10 AFR B+ = 1 = 2 ## REPORT OF GEOCHEMICAL SURVEY The samples were taken at 100 feet intervals as shown on the aforesaid annexed map. The results are as follows: | | | 1 | | | 3 | - \ - \ \ \ - \ \ \ - \ \ \ - \ \ \ \ - \ \ \ \ \ - \ | |--|-----------------|-------------|-----------------------|----------------|--------------|--| | ppm
Copper | ppm
Zinc | ppm
Lead | ppm
<u>Arsenic</u> | ppb
Mercury | ppm
Gold | ppm
Sila≱r | | 25 | 180 | 50 | 55
15 2 | 360 | ND | | | 10 | 155 | 80 | 15 | 1145 | ND | -1 | | 25 | 225 | 60 | 40 | 340 | ND | -1
1
1
1
-1
-1
1
1
1
1
-1
-1 | | 15 | 250 | 80 | 30 | 515 | ND | 1 | | 10 | 195 | 100 | 25 | 1015 | ND | The state of s | | 10 | 160
165 | 70 | 10: | 565
690 | ND
ND | | | 10
10 | 290 | 60
40 | 20
160 | 1885 | ND | 1/ | | 50 | 200 | 50 / | 105 | 1040 | ND | -1 | | 15 | 195 | 50 | 30 | 500 | ND | 7 | | ió | 195 | 50 | 15 | 340 | ND | า้ | | 25 | 265 | 50
80 | 40 | 785 | ND | ຳ | | ĩś | 265
180 | 50 | 25 | 1000 | ND | ์
โ | | 1 5 | 255 | 50 | 50 | 3055 | ND | ī | | 25
15
15
20
25
25
10 | 225
175 | 50 | 45 | 890
625 | ND | -ī | | 25 | 175 | 50 " | 45
25 | 625 | ND | -Ī | | 25 | 21.0 | 40 | | 650 | ND | -1. | | 10 | 31.0 | 70 | 25
20 | 990 | ND | 1 | | 10 | 310
200 | 70 | 20 | 935
1045 | ND | -1
1
-1
1
1
1 | | 15 | 200 | 50
50 | 25
30 | 1045 | ND | -1. | | 10 | 110 | 50 | 30 | 610 | ND | 1 | | 10 | 180 | 50 | 85 | 2535 | ND | 1 | | 10 | 130 | 60 | 30 | 245 | ND | 1 | | 15 | 305 | 60 | 50 | 375 | ND | -1 | | 15
15 | 260 | 50 | 80 | 550 | ND | -1 | | 15 | 160 | 60 | 190 | 2440 | ND | -1
-1
1
1 | | 10 | 235 | 150 | 40 | 860 | ND | -1 | | 20 | 295 | 130 | 30 | 950 | ND | 1. | | 15
15 | 440 | 230 | 70 | 2665 | ND | Ţ | | 10 | 320 | 130 | 45
15 | 675 | ND | Ť | | 10 | 200
290 | 80
120 | 10 | 3740
2440 | ND
ND | <u> </u> | | 15
20 | 90
90 | 30 | 35
15
10 | 650 | ND | 1
-1 | | 20 | 95 | 30 | 16 | 340 | ND | -1. | | 20 | 95
95
80 | 30 | 20 | 415 | ND | -1.
1. | | 15 | áó | 30 _ | 10 | 415
180 | ND | -1 | | 15
15
25
25
20 | .70 | | 10 | 155 | ND | -ī | | 25 | 1.05 | 50 | 70 | 4 1 5 | ND | ì | | 25 | 105 | 40 | 55 | 240 | ND | 1
1
1
1 | | 20 | 110 | 50 | 50 | 205 | ND | 1 | | 25 | 95 | 50 | 150 | 245 | ND | 1 | | 25 | 95 | 40 | 40 | 200 | ND | 3. | | 25
25
20 | 95
95
85 | 50 | 50 | 175 | ND | -1 | | 20 | 95 | 40 | 50 | 170 | ND | -+ ↓ | | 50 | 95
95
100 | 40 | 45
85 | 350 | ND | -1 | | 20 | 100 | 40 | 85 | 230 | \mathbf{n} | – 1 . | | / / | | | | | | | -1- 40 459 PAGE ____ | ppm
Copper | ppm
Zinc | <u>Lead</u> | ppm
<u>Arsenic</u> | ppb
<u>Mercury</u> | ppm
Gold | ppm
Silver | |--|--|--|--|--|----------------------------|---| | 20
25
25
25
25 | - 100 | 40
50 | 70
50
50
75
55
70 | 495
165
220
330
300
325
260 | ND | | | 221 | 145
110 | 50 | 50 | 165 | ND | | | 23
25 | 110 | 40
30 | 76 | 220 | ND
ND
ND
ND
ND | | | 25 | 115
115
100 | 40 | 55 | 300 | ND | -1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
- | | 25
25 | 115 | 40 | 70 | 325 | ND | -1 | | 25 | 100 | 30 | 70 | 260 | ND | -1 | | 25
25
25 | 100
95
100
85
90 | 50
20 | 50
20
25
15
10
5
5
20
25
155
120 | 240
325
410
215 | ND
ND | -1 | | 20 | 100 | 30
30 | 20
25 | 410 | ND | 1 1 | | 1 <u>Š</u> | -85 | 30 | . ī́5 | 215 | ND | _î | | 15
20 | 90 | 30
30 | 10 | 290
210 | ND | , -1 | | 10 | .60 | 30 | 5 | 210 | ND | -1 | | 10
10 | 45
66 | 20
20 | 5 | 255 | ND
ND | -1 | | 10
10
10 | 45
55
70 | 20 | 20 | 340 | ND | 1 | | 15 | 770 | 20
30 | 25 | 155 | ND | 1 | | 20
20 | 235
260 | 40 | 155 | 295 | ND | -1 | | 20 | 260 | 40 | 120 | 265 | ND | -1 | | 20
25 | 302
510 | 60
110 | 20
80 | 235 | ND
ND | r
T | | 20
25
20
15
20
25
25
25
35
30
40
55
60
70 | 210
405
240
130
120
425 | 60 | 50
80
70
110
175
100
120
80
55
50
40 | 255 | ND - | -1 | | 15 | 130 | <u> 40 </u> | 110 | 195 | ND | -ī | | 20 | 120 | 40
120
80
100 | 175 | 265 | ND | -1 | | 25 | 425 | 120 . | 100 | 320 | ND | -1 | | 25 | 440 | 100 | 80
80 | 420 | ND
ND | -1
-1 | | - 35 | 360 | 210 | 55 | 410 | ND | 1 | | 30 | 285 | 1 <i>4</i> 0 | 50 | 225 | ND | 1 | | 40 | 365 | 120 | 40 | 255 | ND | 1 | | うり::
60 | 425 | 210
T00 | 45
70 | 365
305 | ND
ND | Ţ | | 70 | 390
440
360
285
365
425
450
555
370
380
340
250 | 120
160
210
230 | 70 | 415 | ND | 2 | | 40 | 370 | The second | 60 | 415 | ND | ž | | 40
35 | 380 | 210
150
100
140 | 75 | 525 | ND | 4 | | 30
25 | 340 | 150 | 70
70 | 635 | ND | 3 | | 25 | 250
275 | 100 | 10 | 350 | ND
ND | 1 | | 30 | 215 | 130 | 50
30 | 200
305 | ND | _1 | | 35 | 290 | 130
100 | 30 | 195 | ND | -1 | | 30
30
35
30
30
30 | 235
290
190
210
180
220 | 50
80 | 40 | 255
340
395
1555
2635
2635
2635
2635
2635
2635
2635
2 | ND | _1 | | 30 | 210 | 80 | 25 | 300 | ND | -1 | | 30
30 | 550
TΩΩ | 70
90 | 25 | 260
275 | ND | -1
-1
-1 | | 30 | 230 | 90
70 | 30
40
25
25
30
15 | 210
240 | ND
ND | - <u>1</u> | | 30
25 | 205 | 100 | 35 | 180 | ND | -1 | | 96. | | | 45 | | | | -2- 40 . 480 | ppm
Copper | ppm
Zinc | ppm
Lead | ppm
Arsenic | ppb
Mercury | ppm
Gold | opm
Silver | |--|--------------------------|-------------------------|-------------------------|---|----------------|---| | 25 | 200 | 80
190
320
110 | 25 | 200 | ND. | 1.1 | | 25
30 | 280
425
315 | 1909 | 40
80 | 215 | ND | | | 555
355
2250
200 | 425 | 320 | 80 | 155
280
245
195
175
150
115
150
350 | ND
ND | 1 | | 35 | 315 | 110 (1) | 35 | 280 | ND | 1 | | 35 | 265
130
155
110 | 1 30 | 30
25
25 | 245 | ND
ND
ND | 1 | | 25 | 130 | 40 | 25 | 195 | ND | -1 | | 25 | 155 | 40 | 25 | 1.75 | ND | -1
-1 | | 20 | 110 | 30
20 | 20 | 120 | ND
ND | -1 | | 20 | 85
80 | 20 | 20 | 150 | ND. | | | 15
25 | 90 | 30 | 45 | 250 | ND | | | 25 | 90 | 30 ; | 60 | 240 | ND | _ 1 1 | | 25 | 105 | 30 | 75 | 275 | ND | -ī | | 20 | 95 | 30
40
30 | 75
125
130
300 | 350
240
275
480
440
560
1625 | ND | -ī | | 20 | 95
80 | 30. | 130 | 440 | ND | -1 | | 20 | 80 | 30 | 300 | 560 | ND | -1 | | 20 | 90 | 30 | 720
40 | 1625 | ND | -1 | | 25 | 85 | 30 | 40 | 180 | ИD | - <u>1</u> | | 25
20
20
20
20
25
25
25
20 | 90 | 20 | 40 | 180
190
170
155
425
255
140 | ND | -1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
- | | 15 | 85 | 30 | 10 | 170 | ND | -ī | | 20
20 | 120
130
185 | 20 | 15
40
25
15 | 12D | ND
ND | ~ <u>1</u> | | 20 | . 130
185 | 30
60 | 25 | 955 | ND | _1
_1 | | . 25
25
20 | 140 | 40 | 15 | 146 | ND | -1 | | 20 | 120
150
165 | 50 | 15 | #175 | ND- | -1 | | 25 | 150 | 40 | 15
20 | iiŝ | ND | -ī | | 25 | 165 | 30 | 15
15] | 115
135
245
220
180
170 | ND | -1 | | 25 | 170 | 40 | 15] | 245 | ND | -1 | | 25
20 | 260 | 120
60 | 30
40 | 220 | ND | -1 | | 20 | 215 | 60 | 40 | 180 | ND | -1 | | 20 | 210 | 50 | 25 | 170 | ND | - 1 | | 30
30 | 220
175 | 60
50 | 30
160 | 235
1560 | ND | -Ť | | 20 | 110 | 30 | 100 | 2545 | ND
ND | -1
-1
-1
-1 | | 20 | 110
115 | 30 | 145
20 | 3545
395
190 | ND | | | 20
20 | 120 | 30 | 15 | 190 | ND | | | 20 | 140 | 40 | 15
10 | 345 | ND | -1 | | 20 | 145 | 30 | $\overline{25}$ | 300 | ND | -ī | | 15 | 105 | 30 | 25
10 | 300
460 | ND | -1 | | 1.5 | 80 | 30 | 1.0 | 440 | ND | -1 | | 15 | 80 | 30 | 1.0 | 165 | ND | -1 | | 15
15
15
20 | 85
165 | 30
60 | 10 | 435
570 | ND | -1 | | 25
20 | 165 | 60 | 10 | 570 | ND | -1
-1
-1
-1
-1
-1 | | 20 | 110
70 | 50
40 | 10
10 | 350
155 | ND | ~ L | | 15
20 | 90 | 30. | 10 | 315 | ND
ND | - <u>1</u>
-1 | | 2U " | 20 | JU. | 10 | 217 | H.D | <u>−</u> τ | -3- 40 600K.___PAGE__461. THE NAME OF STREET | ppm
Copper | ppm
Zinc | ppm
Lead | ppm
Arsenic | ppb
Mercury | ppm
Gold | ppm
Silver | |---|--|--------------------------------|---|--|------------------|------------------------------------| | 15
20 | 115 | 40 | 25
55
55
25
35 | 365
260
170 | ŅD | | | 25 | 105
110
115 | 30
30 | 22
55 | 200
170 | ND
ND | 7 | | 20 | 115 | 40 | 25 | 450
245
275
160
170 | N <u>D</u>
ND | | | 20
25
30
25
25
25 | 140
175
165
170 | 40
40
60 | 35 | 245 | ND | -1 | | 30
25 | 1/5
165 | 40
60 | 35
30 | 272 | ND
ND | -1
-1 | | 25 | 170 | 50
40 | 25 | 170 | ND | -1 | | 25 | 190
170 | 40 | 25
25
20
30 | 265
190 | ND | -1 | | 30 | 170 | 50
60 | 20 | 190 | ND
ND | -1- | | 30 | 185
210 | 60 | 30 | 305 | ND | -i | | ž5 | 180 | 50
40 | 80 | 395
305
265 | ND | -1 | | 30
25
30
25
20
25
90
80
120 | 295
230 | 40 | 70
80 | 300
205
1040
580
715
545
580 | ND | 3 | | 25 | 230
640 | 40
40 | 80 | 205 | ND
ND | -1 | | BO | 595
680 | 220 | 80
80 | 580 | ND | 2 | | 120 | 680 | 220
2700 | 100 | 715 | ND | 3 | | 80 | 560 | 340 | 90 | 545 | ND
ND | 2 | | 80
80 | 550 | 210 | 85 | 455 | ND | 2 | | 80
55
80
55
25
40 | 560
490
550
365
165
300 | 150
210
200
150
60 | 90
60
85
60
55
70 | 455
445
265
280 | ND | 2 | | 25 | 165 | 150 | 55
70 | 265 | ND | ļ | | 40 | 300
305 | 140 | 65 | 280
245 | ND
ND | 7 | | 70 | 305
540 | 140
270 | 86 | 425 | ND | 3 | | 70
70
25 | 665 | 180 | 65
80
50
50
20
15
40
45 | 360 | ND | 2 | | 25 | 165 | 50 | 50 | 330 | ND | <u>1</u> | | 30
35 | 190 | 70
50 | 15 | 397
635 | ND
ND | -1 | | 35
25
20 | 145 | 40 | 40 | 270 | ND | - 1 | | 20 | 665
165
180
190
145
125 | 40 | 45 | 425
360
330
395
635
270
260
235 | ND | -1 | | 20 | 135 | 40
40 | 30
50 | 235
31.0 | ND
ND | -1 | | 25
25 | 160
170 | 60 | 80 | 365 | ND | 1 | | 25 | 170 | 40 | 70 | 340 | ND | ī | | 25
30
170 | 145 | 40 | 70 | 260 | ND | -1 | | 170 | 190
715 | 50
400 | 170 | 235
1090 | ND
ND | - T | | 70 | 190
715
390 | 180 | 70
55
170
60
55
70
70
55
50 | 345 | ND | 1111112232222112321111111111112221 | | 80 | 410 | 140 | 55 | 345
385
520
950 | ND | 1 | | 100 | 530
610 | 170
200 | 70 | 520
050 | ND
ND | 2 | | 80 | 530 | 170 | / 10
 55 | 755 | ND | 2 | | 100
95
80
65 | 450 | 140 | 50 | 945 | ND | ī | -4- 40 462 PAGE 462 Service Conference of the Conference | ррл | ppm | ррт | ppb | |--|-------------------|--|--------------------------| | Copper | Zind | Lead | Mercury | | 经债金值量 计 | | | | | 20 | 85 | 20 | 280 | | 15
15 | 7.15 | 10
20 | 80 | | | 75
85 | 20 | 145 | | 是直接和企业 | 7.05 | 20 | 130 | | 50 | 105
85 | 38 | 655
255
770
110 | | 20 | 116 | 1985 | 477
770 | | 10 16 1 P | 110
85 | 30 | 110 | | 56 | čá | 30 | 240 | | 5
20
20
20
15
20
20 | 90
90
135 | 30
20
30
30
30
30
30
40 | 720 | | 20 | 1 35 | 30 | 650 | | 20
11 20 | 145 | 40 | 655 | | 40 | 220 | 130 | 455 | | | 165 | 130
60 | 320
270
320
255 | | 20 | 90 | -60 | 270 | | 30
20
30
25
25
40
45
35
60 | 165 | 76 | 320 | | 25 | 130 | 40 | 255 | | 25 | 150 | 40 | 480
590 | | 40 | 230
300 | 100 | 590 | | 45 | 300: | 130
110 | 320 | | 35 | 195 | 110 | 520
415 | | 60 | 375 | 260 | 415 | | 70
50
60 | 425 | 230 | 490
760 | | 50 | 270 | 170 | 760 | | 60 | 385
285
280 | 220
160 | 450 | | 45 | 205
200: | 100 | 120 | | 40
20 | 2000.
105 | 150 | 280 | | 20 | 195 | 120 | 690 | Byron S. Hardie Mining Geologist Byrn S. Narlie Burt 112 1823 Byron S. Hardie Nevada No. 1823 October _2 , 1971 -5- RECOIDED AY THE REQUEST OF Newmont Exploration Limited of October 4 19.71 of 01 mins, past 8 A. M. in Park 40 of OFFICIAL RECORDS, page 455-463 RECORDS OFFICIAL RECORDS RECORDS RECORDS FOR \$ 13.75 40 463 £ ...