96509

AFFIDAVIT OF ASSESSMENT WORK - NEVADA

STATE OF TEXAS SS. COUNTY OF HARRIS

Allen T. Johnson, being first duly sworn upon oath deposes and states that:

- As a person cognizant of the facts, he makes this affidavit for and on behalf of Exxon Corporation.
- 2. Said Exxon Corporation is the party at whose expense the labor and improvements below mentioned were made or performed and is the owner, optionee or lessee of the unpatented mining claims below mentioned.
- 3. The labor or improvements below mentioned were made and performed for the assessment work year ending September 1, 1984, and the same were accomplished between the 1st day of September, 1983 and the 1st day of September, 1984.
- The unpatented lode mining claims, upon which or for the benefit of which the work was performed or improvements made constitute a group of contiguous lode mining claims, are located in Eureka County, Nevada, and are listed in the schedule marked Exhibit A, attached to and hereby made a part of this affidavit of assessment work.
- 5. The amount of money expended was \$105.75 on each claim; the character of labor or improvements was geochemical analysis; and the person or corporation who performed the work or made the improvement was Rocky Mountain Geochemical Corp.

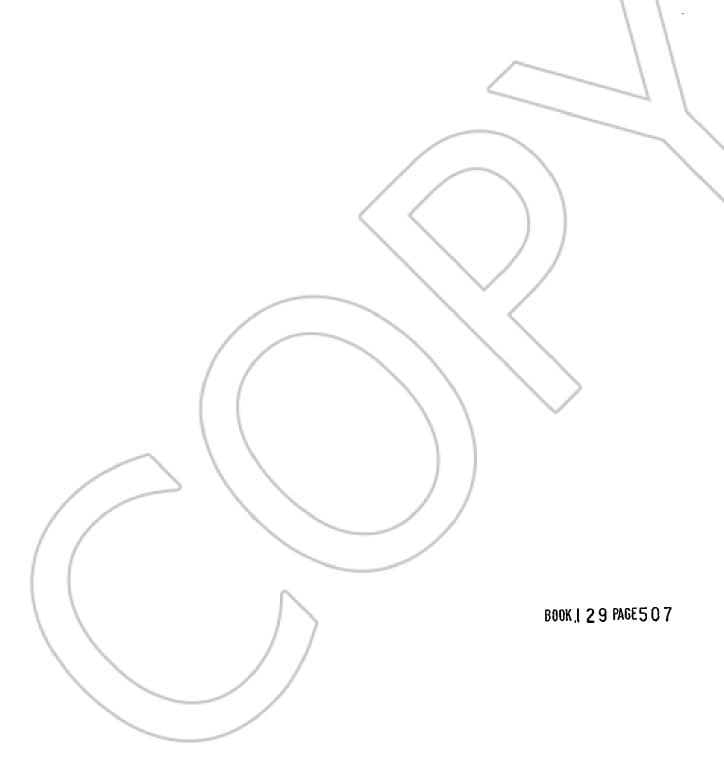
FURTHER Affiant saith naught.

Witness:

Allen T. Johnson

Affiant for and on behalf of

Exxon Corporation


Subscribed and sworn to by the above named affiant and subscribing witnesses before me this 23rd day of October, 1984.

My commission expires: January 11, 1987

SUE CAPLE Notary Public in and for State of Texas My Commission Expires January 11, 1987

Mt. Hope #2608 Eureka County, Nevada

Claim Name and No.	Projected <u>Section</u>	Тwр	<u>Rng</u>	BLM MC No.	8ook/Page
Gap 32	36	23N	51E	NMC 230639	100/468

Geochemical analysis was conducted by A. J. Erickson, Jr., U.S./Europe Mining Geology Manager for Exxon Minerals Company, P.O. Box 4508, Houston, Texas 77210. Mr. Erickson is a geologist with 20 years' experience with various companies in exploration and mining geology. He holds Bachelor of Science and Master of Science degrees in geology. Chemical analyses were done by Rocky Mountain Geochemical Corporation, P.O. Box 337, Midvale, Utah 84047, a reputable major geochemical analytical laboratory.

ROCKY MOUNTAIN DEOGREMICAL CORP.

Certificate of Analysis

June 29, 1984

Exxon Minerals P. O. Box 616

Eureka, Nevada 89316

Attn: James A. Chavis

Client Order No.:

23086

Report On:

3 Pulp Samples

James A. Chavis

6/14/84

Whole Rock Analysis for: Copper, Lead, Zinc, Molybdenum; Gold, Silver, Fluoride, Tin, Tungsten and Manganese.

Fluoride determined by specific ion electrode.

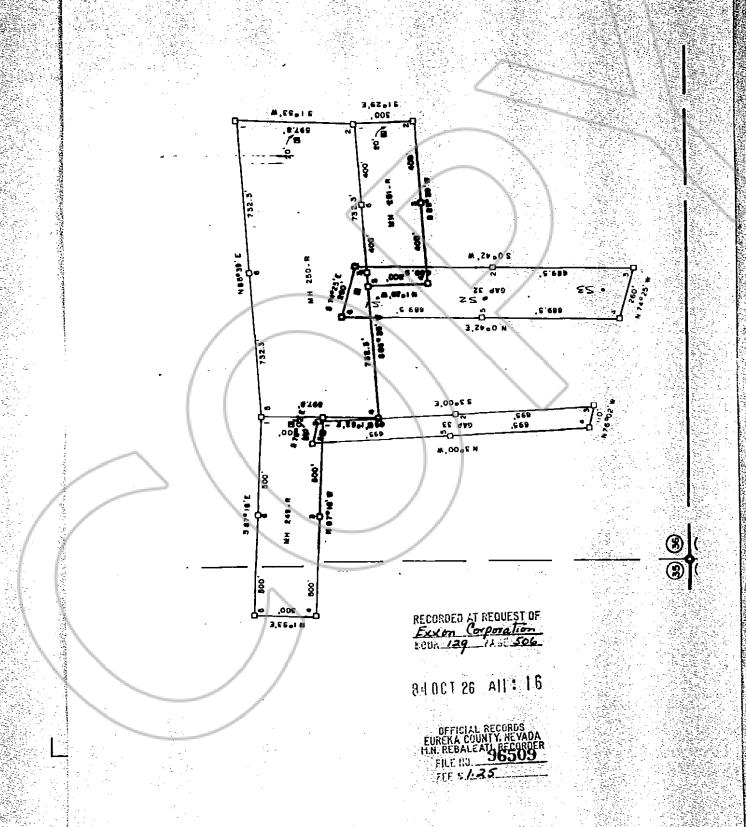
determined colornetrically. Remaining elements determined by atomic absorption.

Remarks:

enc. file BGT/1W

_			GAP	-32		
Element	<u>S-1</u>	S-2 S-	794	Element	<u>s-1</u>	<u>s-2</u> <u>s-3</u>
ppm Mo	2	2	2	ppm Au	/ /	-1
ppm Cu	40	45 4	0	ррm Ag	-1	-1 -1
ppm Pb	90	50 5	5	ppm W	10	10 5
ppm Zn	1 1	1 <u>9</u> 0 18	3	% F	0.22	0.048 0.046
ppm Sn	35	47 7	ı /	ppm Mn	390	460 420
	الأندوان والموجولية	The same of the sa		/	•	age of the contract of

All values are reported in parts per million unless specified otherwise. A minus sign (—) is to be read "less than" and a plus sign (—) "great than." Yolves in parenthesis are estimates. This analytical report is the confidential property of the above mentioned client and for the present and curselves we reserve the right to forbid publication or reproduction of this report or any part thereof without written permit 1 ppm == 0.0001% 1 Troy oz./ion = 34.286 ppm ND - None Detected


SALT LAKE CITY, UTAH

RENO, NEVADA

BOOK 1 29 PAGE 509

34-09-47-(FF)-SL

HO No. N 108104

